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Abstract. We estimate the effect of supply chain proximity on product quality.Merging four
automotive data sets, we create a supply chain sample that reports the failure rate of 27,807
auto components, the location of 529 upstream component factories, and the location of 275
downstream assembly plants. We find that defect rates are higher when upstream and
downstream factories are farther apart. Specifically, we estimate that increasing the distance
between an upstream component factory and a downstream assembly plant by an order of
magnitude increases the component’s expected defect rate by 3.9%. We find that quality
improves more slowly across geographically dispersed supply chains. We also find that
supply chain distance is more detrimental to quality when automakers produce early-
generation models or high-end products, when they buy components with more complex
configurations, or when they source from suppliers who invest relatively little in research
and development.
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1. Introduction
Proximity of upstream and downstream production
plants should improve product quality because it facili-
tates communication, oversight, and responsiveness.
However, studying the relationship between supply
chain proximity and product quality is difficult, because
doing so requires data on (1) a product quality metric,
(2) the location of upstream factories, (3) the location of
downstream assembly plants, and (4) product-level
links connecting the two factories. To obtain these vari-
ables, we combine four independent automotive data sets
that—despite their disparate origins—harmonize at the
product level, yielding a panel of 28,500 supply chains:

• We use the product quality metric from (1) NHTSA’s
SaferCar data set, which reports 976,000 component
defects, and (2) IHS’s PolkInsight data set, which reports
annual vehicle registrations. We measure component
quality with defects per vehicle-year. For instance, the
2002 Ford Fusion’s engine had 685 defect reports in
4,305,340 vehicle-years of drive time.

• We use the upstream factory locations from Bureau
van Dijk’s Orbis database, which reports the where-
abouts of 26,375 facilities of 14,798 component suppliers.
For example, Valeo Sylvania—a supplier of the exterior
lighting system has factories in Seymour, Indiana, USA
(latitude 38.94°N, longitude –85.89°W) and Queretaro,
Mexico (–20.58°N, –100.38°W).

• We use the downstream assembly plant locations from
SupplierBusiness’s Who Supplies Whom (WSW) data-
base, which reports the coordinates of 275 assembly
plants. For example, Chevrolet has 25 assembly plants,
including one in Gravatai, Brazil (latitude –29.94°N,
longitude –50.99°W) and another in Kansas City, Kan-
sas, USA (39.11°N, –94.62°W).
• We use the product-level links from WSW, which

connects upstream suppliers with downstream auto-
makers for 171,000 auto components. For example,
Toyota installed 97 parts from Midway Products in the
2011Corolla, including battery trays, child tether brackets,
spring brackets, and rear stabilizers.
We merge these data sets to create a panel of 28,500

supply chains. For example, we observe that InfascoNut
produced fasteners for the 2014 Corvette inMississauga,
Ontario, Canada (latitude 43.74°N, longitude –79.64°W);
Chevrolet installed the part at their Bowling Green,
Kentucky U.S. plant (latitude 36.95°N, longitude
–86.42°W); and customers filed 53 defect reports per-
taining to this part over 1.363 million vehicle-years on
the road.
The supplier-selection process makes the distance to

the upstream factory endogenous—that is, both prox-
imity and quality influence whether the supplier wins
the procurement contract. We control for this sample
selection bias in two ways. First, we use Dahl’s (2002)
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selection model, instrumenting for the quality of the se-
lected supplier with the characteristics of its competitors.
Second, we treat plant relocations as quasi-exogenous
supply chain distance shocks. In our sample, produc-
tion of 79 car models moved from one assembly plant
to another. These uprootings shifted the supply chain
distances of the models’ 2,451 components (53% of the
supply chains lengthened; 47% shortened). We regress
the change in the defect rates on the change in the
supply chain distances pre- and postrelocation.

Both methods yield the same result: supply chain dis-
tance lowers product quality. Replacing the current
supply chain distance with the distance of the next-
farthest supplier—a 1,271-km increase, on average—
increases the expected defect rate by 1.57%–2.17%.
Tracking the evolution of component defect rates across
production years, we find that quality improves more
slowly when the supply chain is longer.

Finally, we study the moderators between distance
and quality. We find that distance is more detrimental
when the vehicle is early generation or high end, when
the component is complex, or when the supplier is lo-
cated is in another country or invests little in research
and development. Thus, proximity is more salient for
the electrical system of the 2010 Lexus CT—a complex
component of a first-generation, luxurymodel—than for
the interior lights of the 2011 Camry—a simple com-
ponent for a seventh-generation standard model.

2. Literature Review
2.1. Supply Chain Management
Udenio et al. (2014) create a structural econometric
model of the buyer–supplier links reported in Compu-
stat’s customer segment data; their model suggests
that upstream inventory targets evolve dynamicallywith
economic and financial conditions and systematically
overreact to downstream inventory adjustments. With
the same Compustat data, Serpa and Krishnan (2017)
study efficiency spillovers across firms in the supply
chain; they argue that productivity shocks propagate
upstream from customer to supplier. Hendricks and
Singhal (2005) also use Compustat data to show that
upstream firms suffer from abnormal returns as a result
of upstream disruptions. Tunca and Zhu (2018) study
inventory financing in the supply chain spanned by
online retailer JD.com and 170 of its suppliers; they
show the retailer secures the smaller suppliers’ loans
and “demonstrate that [this] buyer intermediation in-
duces lower interest rates andwholesale prices, increases
order quantities, and boosts supplier borrowing.” Jain
et al. (2014, p. 1202) create a sample of buyer–seller
supply chain dyads from 25.8 million U.S. Customs bill-
of-lading manifests to study the impact of global
sourcing on inventory investments. The authors esti-
mate that “an increase in global sourcing results in an
increase in inventory investment. A 10% shift in

sourcing from domestic to global suppliers increases
the inventory investment by 8.8% for an average firm.”
Wu (2016) combines these U.S. Customs dyads with
supply chain links gleaned from Compustat and
Bloomberg to construct a sample of one million buyer-
supplier pairs; he also searches through news sources
and firm disclosures to identify 8,000 firm-specific
production shocks. Wu (2016, p. 2) estimates that
production disruptions “cause substantial impact to
firms even up to 4 connections away from the origin.”
Wang et al. (2017, p. 2) also study production shocks
with Bloomberg’s supply chain data. The authors show
that downstream firms incur procurement risks when
their suppliers’ suppliers are concentrated. They find
that a 10% increase in the commonality of tier-2 sup-
pliers leads to a 4% increase in tier-0 supply risk.
Osadchiy et al. (2016) use the Bloomberg supply chain
data to study how different inventory echelons respond
to business cycle fluctuations; they show that macro-
level shocks have a larger effect on upstream suppliers.
They attribute this result to order aggregation across
firms and time.
Cachon and Olivares (2010) use Automotive News to

link upstream automakers with downstream dealers,
identifying two supply chain features that account for
nearly all the cross-sectional variation in inventory
holdings; they report that “the number of dealerships in
a manufacturer’s distribution network and a manufac-
turer’s production flexibility explain essentially all of the
difference in finished-goods inventory between Toyota
and . . . Chrysler, Ford, and General Motors.” Schmitt
and Van Biesebroeck (2013, p. 202) use WSW and Orbis
data to demonstrate the importance of proximity in auto
supply chains. Rosenbaum (2014, p. 1) combines the
WSW samplewithDun&Bradstreet data to estimate the
trade-off suppliers face between labor costs and distance
to the automaker. He estimates that “for a foreign-
owned supplier, having a plant in a right-to-work
state is equivalent to having a plant 2,000 miles closer
to the assembler.” Adams (2013) also uses Dun &
Bradstreet data to structurally estimate the suppliers’
facility location problem.

2.2. Product Quality
Like us, Ramdas and Randall (2008), Shah et al. (2016),
and Colak and Bray (2016) study auto defect rates with
NHTSA data. Ramdas and Randall (2008, p. 922) esti-
mate the factors that influence Ford brake rotor defect
rates. They find that the hazard rate of failure de-
creases with production volume and increases with
the number of car models that use the part. Thus, they
conclude that “the popular design strategy of com-
ponent sharing can in some cases compromise product
quality via reduced reliability.” Shah et al. (2016,
p. 3) study the operational drivers of recalls. Com-
bining NHTSA’s recalls data with Harbor Report’s
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production data, the authors show that vehicle recall
rates increase with factory utilization and the number
of factory-installed options (such as moon roofs and
dynamic steering). Specifically, they estimate that “a
one-standard-deviation increase in the number of
options (four additional options) is associated with
two additional recalls.” Colak and Bray (2016) struc-
turally estimate the process by which customer failure
reports translate into automaker and federal govern-
ment recalls.

Guajardo et al. (2016) also study auto defect rates, but
with a different data set: JD Power’s Initial Quality
Study. The authors find that warranties offset the effect
of poor quality: they estimate that the median year-
long warranty is worth roughly 3.1% of the median
vehicle price. Guajardo et al. (2012) also study after-
sales maintenance support; with a sample of aircraft
engine maintenance contracts, the authors reveal that
performance-based contracts (which peg service pro-
vider compensation to engine utilization) yield better
performance than time-and-materials contracts (which
peg service provider compensation to repair costs),
thereby proving that service providers exert more ef-
fort under performance-based contracts.

3. Theoretical Motivation
Automakers prefer nearby suppliers: Boston Consul-
ting Group (Spindelndreier et al. 2015) reports that
proximity is the second-most-important auto part
sourcing factor, and Berking et al. (2016) report that
proximity is the third-most-important facility location
factor.

This preference for proximity should in part arise from
product quality considerations. First, it’s easier to mon-
itor nearby suppliers. “Co-location (i.e., the proximity of
suppliers’ operations to the automaker’s), not only
lowers monitoring costs,” Gawer (2011, p. 255) argues,
“but also facilitates the development of local norms”
and “[p]roximity to plants makes it easier for head-
quarters to monitor and acquire information about
plants,” Giroud (2013, p. 861) finds. Salerno et al.
(1998, p. 62) explain that “[f]rom the supplier’s point of
view, proximity represents a chance to improve the
relationship with its client, which may lead to an ad-
aptation of the component (or subset) design in order to
solve some practical problems, or even co-design when
developing new components for the local conditions.”
And Schmitt and Van Biesebroeck (2013, p. 479) mention
that “proximity can be highly conducive to making
a relationship work, and can provide a supplier with
a competitive advantage. Such relationships that originate
from convenience can lead to long-term collaboration.”

Second, proximity leverages local market knowledge,
as firms “located in proximity to other markets . . . will
search more and find better suppliers” (Bernard et al.
2015). For example, procurement auctions often exhibit

a “home bias,” with buyers favoring local investments
about which they have private information (Trionfetti
2000, Brülhart and Trionfetti 2001, Shingal 2015).
Third, shortening interfactory spans lessens travel

damage, as one third-party logistics provider explains:
“From travel distance to changes in road conditions and
elevation, transportation can have wide-ranging effects
on the level of product damage. Stiffer trailers combined
with rough roads canmagnify the compressive stress on
boxes by a factor of ten” (Bodenheimer 2014).

4. Data
Our sample spans 1999 to 2014. It includes 28,557
supply chains, 685 car model years, and 47 component
types. We create it from four data sets: (1) SupplierBu-
siness’s Who Supplies Whom, (2) Bureau van Dijk’s
Orbis, (3) NHTSA’s SaferCar, and (4) IHS Automo-
tive’s PolkInsight.

4.1. Who Supplies Whom
SupplierBusiness’s Who Supplies Whom (WSW) data
set provides the buyer-seller supply chain links and
downstream factory locations (see Figure 1 and Table 1).
A division of IHS Automotive, SupplierBusiness claims
“all themajor automotivemanufacturers and over 250 of
the world’s leading suppliers” as customers.
TheWSWdata set provides supply chain snapshots of

specific model-year versions, reporting which supplier
made which component. Spanning 1994 to 2015, the
data set includes 30 auto groups, 68 automakers, 877 car
models, and 1,765 suppliers from over 40 countries.
WSW is similar to Compustat’s customer segment

data and Bloomberg’s supply chain sample. Whereas
the Compustat and Bloomberg samples are firm level,
the WSW sample is at the product level. For example,
Compustat reports that American Axle & Manufactur-
ing (AAM) received $1.56 billion fromGeneralMotors in
2009. In contrast, WSW reports that AAM supplied
General Motors with differential gears for the 2009
Chevrolet (which was produced at the Ingersoll as-
sembly plant in Canada with a 133,566-unit peak pro-
duction) and the rear drive module, power train
assembly, and rear driveshafts for the 2009 Cadillac
SRX (which were produced at the Ramos Arizpe as-
sembly plant in Mexico with a 30,578-unit peak produc-
tion). Compustat and Bloomberg, respectively, report
60,000 and 15,000 dyads across 70 economic sectors—
two-level Standard IndustryClassification (SIC) codes—
whereas WSW reports 171,107 dyads in a single sector.

4.2. Orbis
Bureau van Dijk’s Orbis data set reports the factory
locations and financials of suppliers (see Figure 1 and
Table 2). It describes 80 million European, 40 million
American, and 27 million Asian companies. We select
the 14,798 suppliers with NAICS industry code 3361
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(motor vehicle manufacturing), 3362 (motor vehicle
body and trailer manufacturing), or 3363 (motor vehicle
parts manufacturing) that have more than 100 employees.
In total, we observe the latitude and longitude of 26,375
supplier factories in 7,639 cities and 135 countries. For
example, Orbis reports that supplier Wagon Automotive
S.R.L. has factories in Fiano and Chivasso, Italy.

4.3. SaferCar
NHTSA’s SaferCar data set provides product-level de-
fect reports (see Table 3). NHTSA’s Office of Defects
Investigation compiles these defect reports from Vehicle
Owner Questionnaires that ask (1) for a description
of the component failure; (2) for the car’s vehicle iden-
tification number, make, model, assembly plant, and
year; (3) whether the defect led to a crash, fire, death,
or injury; and (4) for the car’s speed and the mileage

on the odometer. The SaferCar data set includes
976,062 defect reports spanning 21 years and 177,861
auto products.

4.4. PolkInsight
PolkInsight’s U.S. National Level Vehicles-in-Operation
data set reports vehicle registrations from each state’s
department of motor vehicles (see Table 4). For example,
the sample reports 84,517 registered 2007 Chevy Equi-
noxes in 2008, 83,975 in 2009, and 83,637 in 2010.

5. Variable Construction
5.1. Dependent Variable
Our primary dependent variable isDefect Rate, the total
number of defect reports divided by the total number
of vehicle-year registrations. For example, 2005 Ford
Escape brakes have a rate of 370/6,644,125 = 50.57

Table 1. Sample Observations from the Who Supplies Whom Data Set

Group Brand
Model
year Module Component Assembly plant Supplier

Peak
production Generation

Honda Acura 2013 MDX Fuel tank system Fuel tank
system

United States:
Lincoln

Yachiyo of
Alabama

74,249 3

BMW
Group

BMW 2009 Z4 Steering column/
shaft

Steering shaft
sleeve

Germany:
Regensburg

Draxlmaier
Group

30,651 2

VW
Group

Audi 2003 A8 Body side
moldings

Body side
[outer]

Germany:
Neckarsulm

Novelis 22,468 2

Daimler Mercedes-
Benz

2012 A-
Class

Air vent/duct Air duct system Germany: Rastatt Rehau AG + CO 175,438 3

Fiat Alfa Romeo 2008 Mito Clutch facings Clutch facings Italy: Mirafiori Valeo 57,756 1
Toyota Toyota 2007

Sequoia
Clutch One-way clutch United States:

Princeton
Borgwarner 49,683 2

Figure 1. (Color online) Illustration of Factory Locations Across Three Continents
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defects per million vehicle-year registrations: SaferCar
reports 370 defects for this part and PolkInsight reports
6,644,125 vehicle-year registrations for this model.

5.2. Independent Variable
Our primary independent variable is Distance, the geo-
graphic separation between the upstream factory and
the downstream assembly plant.1 To construct this var-
iable, we identify the following:

• The location of the vehicle model’s assembly
plant. WSW lists assembly plant names, which we
translate to latitudes and longitudes with the Map-
Quest API. For example, WSW reports that GM pro-
duced the 2007 Buick Enclave in its Lansing Delta
plant, andMapQuest positions this plant at coordinates
(42.69°N, –84.67°W).

• The location of the supplier’s factories. Orbis
lists the city of each component factory, which we
translate to latitudes and longitudes with the Map-
Quest API. For example, Orbis reports that Uniwheels

Production has a plant in Stalowa Wola, Poland, and
MapQuest positions this plant at coordinates (50.57°N,
22.03°E).
We observe which downstream plant assembled

which car model and which supplier produced which
component, but not which supplier plant produced
which component. When the supplier has multiple
factories, we define Distance as the separation between
the assembly plant and the closest supplier factory. In
Section 10, we show that dropping the 13% of suppliers
with multiple factories yields the same results.

5.3. Control Variables
5.3.1. Product Control Variables.
• Luxury: a dummy variable indicating a luxury car

model, from the U.S. Consumer Guide classification
• Generation: the carmodel’s development stage, from

WSW
• Subcomponents: the number of subcomponents

that make up the auto component, from WSW

Table 2. Sample Observations from the Orbis Data Set

Supplier Year Country City Assets Employees Patents

Sistemi Sospensioni S.P.A. 2013 Italy Corbetta 361,087 1,298 34
Sistemi Sospensioni S.P.A. 1999 Poland Bielsko-Biala 361,087 1,298 34
Sistemi Sospensioni S.P.A. 2012 Italy Torino 361,087 1,298 34
Qingdao Fangxin Jiacheng Auto Decorations Co., Ltd. 2011 China Qingdao 24,503 250 0
Limited Liability Company TKM-Service 2003 Russian Federation Saint Petersburg 1,904 143 0
Wagon Automotive S.R.L. 2010 Italy Fiano 68,267 207 2
Wagon Automotive S.R.L. 2009 Italy Chivasso 68,267 207 2

Table 3. Sample Observations from the SaferCar Data Set

Manufacturer Brand Model year Date Component Problem description

General Motors LLC Saturn 2006 Vue April 1, 2014 Steering “I had to replace the ignition switch a couple . . .”
Mazda Motor Corp Mazda 1994 Protege January 14,

2004
Seat belts:front “Passenger side active shoulder belt seat belt . . .”

General Motors LLC Chevrolet 2005 Avalanche
1500

March 20, 2011 Electrical
system

“Speedometer sticks, don’t work and shows
wrong. . .”

Starcraft RV, Inc. Starcraft 2003 Camping
Trailer

October 6, 2005 Tires:tread/
belt

“I sustained a complete blowout on a left rear. . .”

Forest River, Inc. Forest
River

2006 Cardinal October 8, 2008 Tires “Our camper, 2006 Forest River Cardinal, came. . .”

General Motors LLC Buick 1995 Century June 23, 2003 Air bags:
frontal

“The vehicle suddenly accelerated, and consume. .
.”

Ford Motor
Company

Ford 2005 Freestyle June 9, 2014 Structure:body “Tl: the contact owns a 2005 Ford Freestyle. . .”

Table 4. Sample Observations from the PolkInsight Data Set

Model year Make Model Segment 2008 2009 2010 . . .

2007 Chevrolet Equinox Nonluxury CUV 84,517 83,975 83,637 . . .
2008 Chevrolet Equinox Nonluxury CUV 79,696 87,541 87,050 . . .
2009 Chevrolet Equinox Nonluxury CUV 31,525 31,509 . . .
2010 Chevrolet Equinox Nonluxury CUV 135,519 . . .
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• Volume: car model sales, from Wards’ Auto Info-
Bank data set

5.3.2. Supplier Control Variables.
• Employees: the employee count, from Orbis
• Assets: the aggregate assets reported on the sup-

plier’s balance sheet, from Orbis
• Patents: the number of patents held by the sup-

plier, from Orbis
• International: a dummy indicating that the upstream

and downstream factories are in different countries

5.3.3. Fixed Effects. We include fixed effects to control
for the car model, component type, production year,
upstream factory country, and downstream factory
country.

Table 5 provides descriptive statistics of the car
brands, Table 6 provides summary statistics of the control
variables, and Table 7 shows the correlation between
variables.

6. Baseline Analysis
6.1. Identification Problem: Selection Endogeneity
We only observe a supplier when a manufacturer chooses
to source from it. And the probability that a manu-
facturer chooses a particular supplier depends on both
its distance and quality. Thus, the supplier-selection

Table 5. Supply Chain Statistics by Car Brand

Production Countries Plants

Start End Upstream Downstream Upstream Downstream

Acura 2006 2013 13 2 44 5
Audi 1999 2014 26 3 151 5
BMW 1999 2014 25 3 154 5
Buick 2007 2011 16 2 53 3
Cadillac 2002 2014 21 3 105 5
Chevrolet 2002 2014 21 5 109 17
Chrysler 2003 2010 19 4 95 6
Dodge 2002 2012 18 2 117 10
Fiat 2007 2010 12 2 40 2
Ford 1999 2014 24 6 177 15
GMC 2001 2013 15 3 66 4
Honda 2001 2013 18 5 125 10
Hummer 2005 2005 6 1 7 1
Hyundai 2000 2014 16 5 59 9
Infiniti 2004 2012 9 1 18 2
Jaguar 1999 2009 17 1 71 2
Jeep 2004 2010 15 2 75 4
Kia 2009 2012 11 4 24 4
Land Rover 1999 2012 19 1 61 2
Lexus 2009 2012 10 2 20 3
Lincoln 2002 2012 14 2 71 3
Maruti Suzuki 2002 2007 7 1 17 2
Mazda 1999 2014 14 3 38 4
Mercedes 1999 2014 23 3 125 5
Mercury 2007 2008 12 1 32 2
Mitsubishi 2005 2012 9 2 38 2
Nissan 2003 2014 18 4 119 6
Pontiac 2002 2008 14 2 63 4
Porsche 1999 2012 19 1 83 3
Saab 2005 2005 9 1 27 1
Saturn 2006 2007 14 2 57 4
Subaru 2008 2014 14 2 40 3
Suzuki 1999 2006 10 2 34 2
Toyota 2001 2013 20 9 118 17
Volvo 1999 2012 23 3 82 3
VW 1999 2014 23 6 117 7

Table 6. Summary Statistics: Covariates

Mean SDCovariate

Distance 3,821 3,788
Assets 2,898,756 4,320,986
Employees 27,586.8 21,174.6
Generation 3.74 2.43
Luxury 0.34 0.48
International 0.84 0.37
Patents 17 57.8
Volume 62,848 87,986
Subcomponents 43.31 145.83
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process can correlate with the distance and quality of
our sample’s suppliers. To control for this potential
selection bias, we jointly model the supplier-selection
probabilities and the component defect rates, in the
fashion of Dahl (2002).

6.2. Model
6.2.1. Supplier Selection. Let p be the part—for ex-
ample, the suspension system of the 2011 Jeep Grand
Cherokee—and 6p the set of suppliers capable of
producing this part—for example, the 312 suspension
system suppliers in our sample. The value of sourcing
part p from supplier s ∈6p is

Valueps � αF
ps︸︷︷︸

fixed effects

+ αC
p Controlsps︸�����︷︷�����︸

control variables

+∑m+n

i�1
αD
piB

(
Distances, i

)
︸�����������︷︷�����������︸

distance splines

+ ︸︷︷︸εps
unobserved
value shock

, (1)

where εps has a type I extreme value distribution with
PDF dF and B (Distances, i) is the ith basis function of a
degree n B-splinewithm interior knots spaced according
to Distance’s quantiles. The parameters (αD

p1, . . . ,α
D
p(m+n))

are “Dahl coefficients.”

6.2.2. Defect Rates. Sourcing part p from supplier s
yields

Defect Rateps � βFps︸︷︷︸
fixed effects

+ βCControlsps︸�����︷︷�����︸
control variables

+ βDDistances︸�����︷︷�����︸
distance effect

+ ︸︷︷︸ηps

unobserved
quality shock

. (2)

6.2.3. Selection Correction. The automaker chooses the
highest-valuation supplier. So we only observe s* �
arg maxs∈6pValueps. This censoring can lead to correlation
between covariate Distances* and error ηps* in our sample
because the selection process influences both: Distances*
influences Valueps* directly, and ηps* influences Valueps*
indirectly via its correlation with εps*. To account for
this endogeneity, we factor in the expected quality
shock conditional on winning the contract. We suppose

that ηps* has conditional distribution dF(ηps* | εps*). The
probability of the automaker choosing supplier s∈6p is

Ψps �

exp
(
α F
ps + αC

p Controlsps

+∑m+n
i�1 αD

piB
(
Distances, i

))
∑

s′∈6p

(
exp

(
α F
ps′ + αC

p Controlsps′

+∑m+n
i�1 αD

piB
(
Distances′ , i

)))
. (3)

Variable εps* has conditional PDF

dF(εps* | s* � arg max
s∈6p

Valueps) � dF
(
εps* + log(Ψps*)

)
.

(4)

Accordingly, given that supplier s* won the procurement
contract, variable ηps* has conditional expectation

E
(
ηps* | s* � arg max

s∈6p

Valueps
)
�
∫∫

ηps* · dF
(
ηps*| εps*

)

· dF
(
εps* + log(Ψps*)

)
.

(5)

Term E
(
ηps* | s* � arg maxs∈6pValueps

)
depends on the

first- and second-stage covariates through Ψps*: the se-
lection probability is a sufficient statistic for the se-
lection bias. Thus, we can approximate E

(
ηps* | s* �

arg maxs∈6pValueps
)
arbitrarily closely with a B-spline

function of Ψps*. Following Dahl (2002), we add these
B-splines directly to our defect-rate equation:

Defect Rateps* � βFps* + βCControlsps* + βDDistanceps*

+ Ê
[
ηps* | s* � argmax

s∈6p

Valueps
] + η̂ps*

(6)

where

E[ηps* | s* � arg max
s∈6p

Valueps] � ∑m+n

i�0
γiB

Ψ
(
Ψps*, i

)

and

η̂ps* � ηps* − Ê[ηps* | s* � arg max
s∈6p

Valueps].

Table 7. Correlation Coefficients for Independent Variables

Assets Employees Generation Luxury Subcomponents Patents Volume International

Assets 1 — — — — — — —
Employees 0.681 1 — — — — — —
Generation 0.014 0.015 1 — — — — —
Luxury –0.040 –0.031 –0.154 1 — — — —
Subcomponents –0.035 –0.041 0.050 0.026 1 — — —
Patents 0.232 0.245 0.002 0.058 0.035 1 — —
Volume 0.023 0.026 0.290 –0.405 0.100 –0.051 1 —
International –0.279 –0.217 –0.005 0.065 0.078 0.065 –0.084 1
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The term BΨ(Ψps*, i) is the ith basis function of a de-
gree n B-spline with m interior knots spaced according
to the quantiles of Ψps*. The expectation E[ηps* | s* �
arg maxs∈6pValueps] is conditional on

E[Defect Rateps*] � βFps* + βCControlsps* + βDDistanceps*.

Thus, our new error term, η̂ps*, is orthogonal to
E[Defect Rateps*]’s constituent parts. As a result, we
wash out the defect rate variation that correlates with
unobserved quality attributes.

We estimate our model in two steps:
1. We estimate the supplier valuation coefficients

with a set of multinomial logistic regressions (one per
component type) that maximize the likelihood of the
observed supplier configuration. We set the choice
probability estimates, Ψ̂ps, to the regressions’ fitted
values. We set n � m � 3, characterizing the relationship
between the distance to a supplier and the value of that
supplier with four third-degree-polynomial splines.

2. We estimate expression (6) using Ψ̂ps. Again, we
set m � n � 3 in the spline sum.

We use a multiplicative specification, taking the
logarithm of the continuous variables, because they are
positive and skewed. And we calculate standard errors
with the bootstrap, sampling supply chain links ran-
domly (Newey 1984). In Section 11, we show that our
results hold under alternative specifications.

6.3. Estimates
6.3.1. Supplier Selection. Figure 2 shows how supplier-
choice probability estimates vary with supply chain

distance.2 Overall, the chosen suppliers have an average
selection probability of 0.13, and the unchosen suppliers
have an average selection probability of 0.014. Figure 3
depicts the empirical fit of our supplier selection model.
When pooled, our multinomial logistic regressions have
a McFadden R-squared of 0.30, both in and out of
sample (which suggests we did not overfit the model).

6.3.2. Defect Rates. Table 8 shows that the relationship
between Distance and Defect Rate is positive and sta-
tistically significant across all specifications. Our 0.0083
elasticity estimate implies that scaling supply chain
distance by one order of magnitude increases expected
defect rates by 100 · (1000.0083 − 1) � 3.90%.
To interpret these results, we conduct two counter-

factual analyses: a ceteris paribus counterfactual and
a mutatis mutandis counterfactual (see Figure 4). Both
use our statistical model to anticipate what the average
Defect Rate would have been had the Distance variable
been that of the nth-next-closest qualified part sup-
plier. The ceteris paribus counterfactual changes only
the Distance variable, whereas the mutatis mutandis
counterfactual changes all the supplier variables. Table
4 depicts these counterfactuals. The ceteris paribus and
mutatis mutandis analyses suggest that replacing the
current set of suppliers with the next-closest set would
increase expected defect rates by 1.57% and 2.17%,
respectively.
Figures 5 and 6 plot the relationship between

supplier proximity and product quality by compo-
nent type and brand. The correlation is significantly
positive across 13 component types and 10 brands

Figure 2. Selection Model Fit

Notes. These plots depict the fitted values of LOESS regressions of choice probability estimates of the selection probability, Ψ̂ps, on the quantiles
of Distanceps. We run eight regressions, dividing the sample by (1) whether the car model is luxury or standard, (2) whether the car model
generation number is larger or smaller than themedian, and (3) whether the component count is larger or smaller than themedian.We depict the
regression curves’ 95% confidence intervals with gray bands.
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and is significantly negative across one component
type and two brands.

This subsample analysis reveals that different com-
ponent types and car brands respond differently to
supply chain distance. To explain this heterogeneity,
we study the factors that moderate the effect of dis-
tance. Table 9 indicates that distance is more detri-
mental to product quality when

1. The component resides in a high-end (luxury) product.
The elasticity of defect rates to supply chain distance is
larger in luxury model parts than in standard model
parts. High-end products require quality materials and
customized components that must last longer andmeet
higher performance standards.

2. The component has many subcomponents. The elas-
ticity of defect rates to supply chain distance is larger

when the component comprises multiple subcompo-
nents. Complexity necessitates proximity: producing
a complex component requires more oversight and
monitoring than producing a stand-alone part.

3. The product is new. The elasticity of defect rates to
supply chain distance is significantly larger in early-
generation model parts than in late-generation model
parts. Learning by doing counteracts the problems that
distance creates.

4. The supplier invests little in research and development
(R&D). The elasticity of defect rates to supply chain
distance is larger when the supplier has few production
patents. Less oversight of vendors is needed when they
do research and development.

5. Production is outsourced to another country. An in-
ternational mile counts more than a domestic mile. The

Figure 3. Out-of-Sample Test

Notes. These plots illustrate the empirical fit of our supplier selectionmodel. In the spirit ofMcFadden’sR2 calculation, we graph the likelihood ratio
of the selected supplier’s choice probability under ourmodel andunder the nullmodel inwhich all qualified suppliers have an equal chance of being
selected. This likelihood ratio exceeds one when our model outperforms the null model, that is, when Likelihood(Fit)> Likelihood(NullModel). The
black curves depict the in-sample fit-in which we use all the data to train and fit the model—and the gray curves depict the out-of-sample fit—in
which we train the model on half of our data and fit it on the other half.
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elasticity of defect rates to supply chain distance is
larger when the part is produced by a foreign supplier.
Crossing borders makes travel arduous and creates
cultural, economic, and political barriers to the supply
chain.

6. The model has a large production volume. Scaling up
an operation exposes the fragility of long supply chains.
The elasticity of defect rates to supply chain distance
increases with production volume. Proximity makes the
supply chain more resilient to the stresses of scaling.

7. Factory Relocations
Automakers sometimes move production from one
assembly plant to another. We now treat these reloca-
tions as exogenous distance shocks. The relocations

simultaneously shift the supply chain distance for every
auto component in the car by lengthening some and
shortening others. For example, in 2010 Toyota relocated
the assembly of its tenth-generation Corolla from its
NUMMI plant in Fremont, California to Blue Springs,
Mississippi, after Governor Haley Barbour “promised
Toyota a 20-year corporate tax holiday” (Dawson
2010). The move did not change the Corolla’s supplier
base (see Table 10) or its production process, because
Toyota shipped its “production equipment . . . from
the recently shuttered NUMMI plant (now owned
by Tesla) in California [to Blue Springs]” (Dawson
2010). But the shift did change the Corolla’s supply
chain distances: for example, the distance to Gentex’s
interior mirror factory in Zeeland, Michigan, decreased

Table 8. Defect-Rate Model Estimates

1 2 3 4 5 6 7 8 9

Distance 0.83*** 0.85*** 0.84*** 0.85*** 0.83*** 0.82*** 0.81*** 0.80*** 0.80***
(0.13) (0.12) (0.15) (0.15) (0.15) (0.15) (0.15) (0.15) (0.15)

Luxury — 7.09*** 7.09*** 6.47*** 3.63*** 2.83*** 2.84*** 2.84*** 2.83***
— (0.53) (0.53) (0.60) (0.59) (0.58) (0.58) (0.58) (0.58)

International — — 0.04 0.00 −0.18 0.05 0.05 0.04 0.09
— — (0.62) (0.62) (0.61) (0.61) (0.61) (0.61) (0.61)

Generation — — — 0.65** –0.35 –1.24*** –1.24*** –1.23*** –1.24***
— — — (0.30) (0.30) (0.31) (0.31) (0.31) (0.31)

Subcomponents — — — — 5.03*** 3.77*** 3.77*** 3.77*** 3.78***
— — — — (0.17) (0.19) (0.19) (0.19) (0.19)

Assets — — — — — 20.54*** 20.54*** 20.55*** 20.53***
— — — — — (1.43) (1.43) (1.43) (1.43)

Employees — — — — — — −0.03 0.00 0.08
— — — — — — (0.11) (0.12) (0.12)

Patents — — — — — — — –0.09 –0.05
— — — — — — — (0.10) (0.10)

Volume — — — — — — — — –0.20**
— — — — — — — — (0.09)

Dahl coefficient 1 0.22 0.28 0.28 0.39 –0.15 –0.15 –0.14 –0.11 –0.18
(1.89) (1.89) (1.89) (1.87) (1.80) (1.77) (1.78) (1.78) (1.78)

Dahl coefficient 2 –0.78 –0.76 –0.76 –0.75 –1.01 –0.89 –0.90 –0.85 –0.82
(1.15) (1.15) (1.15) (1.14) (1.16) (1.18) (1.18) (1.20) (1.20)

Dahl coefficient 3 –0.92 –0.73 –0.73 –0.63 –0.90 –0.78 –0.78 –0.73 –0.56
(1.47) (1.48) (1.47) (1.46) (1.43) (1.38) (1.38) (1.40) (1.39)

Dahl coefficient 4 1.82 1.68 1.68 1.68 0.70 1.01 0.99 1.01 1.34
(2.22) (2.23) (2.22) (2.19) (2.18) (2.19) (2.21) (2.23) (2.23)

Dahl coefficient 5 –4.56 –3.83 –3.84 –3.52 –3.28 –3.55 –3.54 –3.48 –3.82
(3.87) (3.81) (3.77) (3.77) (3.65) (3.48) (3.49) (3.53) (3.52)

Dahl coefficient 6 –1.94 –2.36 –2.36 –2.37 –4.56 –3.95 –3.94 –3.69 –2.96
(5.96) (5.99) (6.02) (6.04) (5.90) (5.89) (5.91) (5.93) (5.88)

R2 0.23 0.23 0.23 0.23 0.24 0.25 0.25 0.25 0.25
VIF — 1.00 1.35 1.36 1.37 1.37 1.42 1.70 1.92
N 23.79 23.79 23.79 23.79 23.79 23.79 23.79 23.79 23.79

Notes. This table presents estimates of the defect rate coefficients. Each column represents a different
regression; we build up to our full specification gradually, adding one control variable at a time. Below,
the rows report the regressions’ R2, variance inflation factor (VIF), and sample size N (measured in
thousands of observations). For brevity, we do not tabulate the production year, brand, component, or
country fixed effects. For illustrative purposes, we scale the estimates by a factor of 100 (e.g., the top-left
estimate is actually 0.0100). We present bootstrapped standard errors. The sample horizon is 1999–2014.

*p < 0.1; **p < 0.05; ***p < 0.01.
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from 2,188 miles to 721.5 miles, whereas the distance
to SIKA Automotive’s factory in Santa Fe Springs,
California, increased from 342.4 miles to 1,812.3 miles
(see Figure 7).

Our data set reports 79 such plant shifts. For instance,
• Mercedes-Benz’s productionmoved to Tuscaloosa

after the government of Alabama promised “more
than $200 million in job training, tax breaks, and other
incentives and even offered to rename a section of Inter-
state 20/59 the Mercedes-Benz Autobahn” (Woodruff
and Templeman 1993).

• Hondamoved production of its 2011 AccordMDX
sport-utility model from Lincoln, Alabama, to East
Liberty, Ohio, because “it need[ed] to free up space
both for the redesigned 2016Honda Pilot SUV, which is
likely to see sales climb for its new iteration, and for
the Honda Ridgeline truck, production of which will

resume next year with a redesigned version” (Eaton
2015).
• Ford moved the production of its 2011 Explorer

from Louisville, Kentucky to Chicago, Illinois, after
investing “$400 million in its Chicago assembly and
metal-stamping plants” (Pete 2015).
Collectively, the 79 relocations affected 1,203 sourc-

ing relationships, spanning 2,451 products. The plant
moves repositioned vehicle assembly closer to 553 sup-
plier factories and farther from 650 supplier factories.
The supply chains that shortened did so by 3,105.6 km, on
average, and those that lengthened did so by 3,184.2 km.
The relocations divide our sample into three groups:

1. A treated group of suppliers that experienced
a distance increase following relocation.

2. A treated group of suppliers that experienced
a distance decrease following relocation.

Figure 4. Counterfactual Analysis

Notes. This figure depicts the results of our two counterfactual analyses. The ceteris paribus counterfactual estimateswhat the average defect rate
would have been had the supply chain distance variable been that of the nth-next-closest qualified part supplier (without any other variables
changing). The mutatis mutandis counterfactual, in contrast, allows other variables to vary contiguously with Distance. Then = 0 values are the
current defect rates.
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3. A control group of suppliers that didn’t experi-
ence a relocation.

The two treated groups serve as benchmarks for one
another; for instance, if the factory workers in the new
facility are more skilled, the relocation should impose
a positive shock on quality two treated groups. The
only factor that changes disparately with the relocation
is supply chain distance. And Table 11 reports that the
relocations improve quality when distances shorten
and harm quality when distances increase.

We regress the change in the defect rates on the
change in supply chain distances with the following
equation:

ΔDefectRateps � βFE,ps + β′xxps + ΔDistanceps + εps.

The dependent variable is the defect-rate change across
two production years of a model component, and the
primary independent variable is the corresponding
distance change. For example, we find (1) a defect rate
of 0.23 for the vibration controls of the 2009 Corolla
(manufactured by Sika and assembled by Toyota in
Fremont, California) and (2) a defect rate of 0.27 for the
vibration controls of the 2010 Corolla (manufactured
by Sika and assembled by Toyota in Blue Springs,
MS); accordingly, the dependent variable is 0.04
(ΔDefectRate � 0.27 − 0.23). We use the same covariates
as before, except we have replaced the International
dummy with two new dummies: (1) Out-to-In, which

equals 1 when the automaker relocates assembly from
abroad to the supplier’s home country, and (2) In-to-Out,
which equals 1 when the automaker relocates assembly
from the supplier’s home country to abroad.
Table 12 reports the results. We find a significant

positive relationship between supply chain distance
and defect rates. Further, we find defect rates decrease
when the automaker relocates to the supplier’s country.

8. Proximity and Quality Improvement
Our data reveal that relationships are persistent in the
automotive industry and that suppliers and automakers
work together to improve subsequent versions of a car
model. Consider the Audi A6’s alternator, supplied by
Valeo, whose defect rate fell by 13% between its 2001
and 2005 models. A web search reveals that Valeo
upgraded the alternator’s specifications on two occa-
sions, changing its amperage, weight, and dimensions.
Could geographic distance propel this rate of quality

improvement? In Section 3, we argued it does, because
proximity facilitates monitoring, collaboration, and
face-to-face interactions—especially in the automotive
industry, where 60%–80% of auto parts are redesigned
with every iteration of a car model (Clark and Fujimoto
1991, p. 149) and where tier-1 components are often
tailored to specific models (Dyer 2000). Thus, far-flung
suppliers should improve quality more slowly.

Figure 5. Supply Chain Distance and Product Quality by Component Type
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To test this hypothesis, we estimate how the evolution
of defect rates depends on supply chain distance with
a sample of 1,783 product-model-supplier triplets ob-
served across subsequent model-year iterations. We
regress Rate Change on Distance, where Rate Change is
the change in the defect rate between the two model-
year iterations. Table 13 reports that the intercept is
negative, which indicates that quality systematically
improves over time. But the Distance coefficient is pos-
itive, which indicates that this improvement is slower
when the supplier and automaker are farther apart.

This result is supported by anecdotal evidence. From
managerial interviews, we learned that automakers
rarely get it right from the get-go. It is standard prac-
tice in automotive product development to maintain
a “queue” of known issues and complaints to eventually
get around to. After several model-year iterations, some
products improve; others do not. Spindelndreier et al.
(2015) believe that this disparity could be, in part, driven
by supply chain proximity:

[A component supplier] had two plants that were very
close to a Toyota facility . . . . And those plants were
strikingly better than the average in their processes . . .
because Toyota’s spending a lot of effort training and

teaching those guys. . . . I mean, it’s just, if you’re down the
road with your plant, if you’re having problems you deal
with each other and you try to solve it. And you start
working, collaborating very closely. You start maybe
discussing even a small deviation before it becomes an
actual product. If you’re much farther away you likely will
not do that.

9. Travel Time
The value of proximity may depend not only on how
far apart the two factories are but also on how quickly
the supply chain partners can travel from one factory to
the other. We reestimate our results with an alternative
distance metric: the average travel time between up-
stream and downstream factories. To estimate this
effect, we focus on those pairs of factories that can be
connected through ground routes (see Figure 8).
We measure the average interfactory travel time with

Travel Time = TravelDistance/Average Travel Speed. Travel
Distance is the distance of themost efficient driving route
between the factories and Average Travel Speed factors in
slowdowns caused by stoplights, bridges, tolls, etc. We
derive both metrics from OpenStreetMap.com, pro-
curing all ground travel routes and the average weekly
travel speed across every directed kilometer segment

Figure 6. Supply Chain Distance and Product Quality by Car Brand

Notes. The two plots above depictDefect Rate, our primary dependent variable, andDistance, our primary independent variable.We use a log-log
scale, winsorizing the tails at 3%. We eliminate component types with fewer than 40 observations. We depict the fitted regression curve with
a line; this line is black when the slope is significantly different from zero, and white otherwise. We depict the regression curves’ 95% confidence
intervals with gray bands.
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in each road. After obtaining the various travel routes,
an applied programming interface (API) gives us the
shortest traveling route between the two factories. For

example, to go from Chicago, Illinois to Columbus,
Ohio, we find three routes: (1) via I-65 S and I-70 E (5 hr
8min; 356miles), (2) via US-30 E (5 hr 47min; 327miles),

Table 9. Defect-Rate Model Estimates with Interactions

1 2 3 4 5 6 7 8 9

Distance 0.37** 0.73** 0.17*** 0.31*** 0.20*** 0.38*** 0.11** –0.10** 0.44***
(0.15) (0.31) (0.34) (0.34) (0.51) (1.74) (1.80) (1.78) (1.71)

Distance · Luxury 1.02*** 0.95*** 0.92*** 0.93*** 0.94*** 1.09*** 1.06*** 1.06*** 1.04***
(0.21) (0.22) (0.22) (0.23) (0.23) (0.22) (0.22) (0.22) (0.22)

Distance · International — 1.47*** 1.46*** 1.45*** 1.38*** 1.42*** 1.40*** 1.45*** 1.41***
— (0.37) (0.37) (0.37) (0.38) (0.38) (0.39) (0.39) (0.39)

Distance · Generation — — — 0.03 –0.04** –0.14*** –0.15*** –0.14*** –0.16***
— — — (0.02) (0.02) (0.02) (0.02) (0.02) (0.2)

Distance · Subcomponents — — — — 0.34** 0.28* 0.27* 0.27* 0.29*
— — — — (0.13) (0.15) (0.15) (0.15) (0.15)

Distance · Assets — — — — — 1.46 1.47 1.46 1.4
— — — — — (1.69) (1.68) (1.68) (1.69)

Distance · Employees — — — — — — –0.08 –0.17 –0.13*
— — — — — — (0.05) (0.10) (0.10)

Distance · Patents — — — — — — — 0.15* 0.21**
— — — — — — — (0.08) (0.09)

Distance · Volume — — — — — — — — –0.12*
— — — — — — — — (0.07)

Luxury –5.49*** –4.93*** –4.76** –4.78** –4.90** –6.16*** –5.95*** –5.93*** –5.77***
(1.81) (1.89) (1.88) (1.93) (1.93) (1.94) (1.89) (1.89) (1.88)

International 0.17 –10.11*** –10.10*** –10.08*** –9.47*** –9.76*** –9.55*** –9.87*** –9.35***
(0.61) (2.52) (2.53) (2.56) (2.60) (2.64) (2.68) (2.71) (2.76)

Generation –1.22*** –1.17*** –1.13*** –1.39 –0.85 –0.01 0.13 –0.03 0.15
(0.31) (0.31) (0.31) (1.63) (1.58) (1.64) (1.65) (1.62) (1.64)

Subcomponents 3.77*** 3.76*** 3.80*** 3.80*** 1.07 1.54 1.60 1.64 1.43
(0.19) (0.19) (0.19) (0.19) (1.12) (1.21) (1.20) (1.20) (1.26)

Assets 20.50*** 20.52*** 20.51*** 20.51*** 20.52*** 8.82 8.75 8.70 9.02
(1.43) (1.42) (1.42) (1.42) (1.41) (6.56) (6.54) (6.52) (6.59)

Employees 0.08 0.12 0.11 0.11 0.11 0.11 0.74 1.54** 1.23**
(0.11) (0.11) (0.11) (0.11) (0.11) (0.11) (0.46) (0.60) (0.60)

Patents –0.05 –0.03 –0.03 –0.03 –0.03 –0.04 –0.06 –1.28* –1.74**
(0.10) (0.10) (0.10) (0.10) (0.10) (0.10) (0.10) (0.66) (0.69)

Revenue –0.20** –0.21** –0.21** –0.21** –0.21** –0.21** –0.20** –0.19** 0.78
(0.09) (0.09) (0.09) (0.09) (0.09) (0.09) (0.09) (0.09) (0.55)

Dahl coefficient 1 –0.20 –0.28 –0.27 –0.27 –0.22 –0.19 –0.20 –0.23 –0.29
(1.77) (1.76) (1.77) (1.77) (1.77) (1.76) (1.77) (1.76) (1.78)

Dahl coefficient 2 –0.82 –0.87 –0.91 –0.91 –1.07 –1.00 –1.04 –1.07 –1.05
(1.20) (1.19) (1.20) (1.20) (1.19) (1.20) (1.19) (1.19) (1.19)

Dahl coefficient 3 –0.57 –0.48 –0.44 –0.44 –0.32 –0.32 –0.37 –0.36 –0.38
(1.39) (1.39) (1.39) (1.39) (1.39) (1.39) (1.39) (1.39) (1.39)

Dahl coefficient 4 1.23 1.00 0.87 0.87 0.50 0.65 0.61 0.63 0.92
(2.24) (2.24) (2.25) (2.25) (2.23) (2.25) (2.26) (2.26) (2.23)

Dahl coefficient 5 –3.44 –3.01 –2.72 –2.72 –2.93 –3.01 –3.12 –3.23 –3.80
(3.53) (3.45) (3.46) (3.47) (3.46) (3.48) (3.44) (3.48) (3.39)

Dahl coefficient 6 –3.57 –4.57 –4.74 –4.75 –4.43 –4.26 –4.38 –4.34 –4.05
(5.95) (6.07) (6.12) (6.11) (5.94) (5.99) (5.98) (5.98) (5.88)

R2 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
VIF 46.65 62.60 62.60 62.86 63.30 337.43 337.54 337.55 337.75
N 23.79 23.79 23.79 23.79 23.79 23.79 23.79 23.79 23.79

This table presents estimates of our defect rate model, extended to include up to eight additional interaction terms. We present the estimates in
the fashion of Table 8. The sample horizon is 1999–2014.

*p < 0.1; **p < 0.05; ***p < 0.01.
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and (3) via I-90 E (5 hr 55 min; 363 miles). We choose
route (1), which, despite being longer than route (2),
is the quickest.

The correlation between Travel Time and Distance is
0.961. Unsurprisingly, Table 14 shows that all our base-
line results are identical.3

10. Robustness Analysis
Estimates for all robustness tests are shown in Table 15.

10.1. Suppliers with Multiple Factories
We observe the geographic locations of suppliers’ fac-
tories, but we don’t observe which factory produces
what product. As a robustness check, we reestimate
our results by restricting our sample to suppliers with
only one factory (which results in dropping 13% of
our observations). Eliminating multifactory suppliers
obviates the ambiguity in upstreamproduction location:
we knowwhere a supplier does its manufacturingwhen

Table 10. Random Sample of Toyota’s Supplier Base for the 2010 and 2011 Corolla Models

Model Year Plant Generation Product Supplier

Corolla 2010 Blue Springs 10 Constant Velocity Joints NTN
Corolla 2011 Fremont 10 Constant Velocity Joints NTN
Corolla 2010 Blue Springs 10 Engine Shafts Kautex Textron
Corolla 2011 Fremont 10 Engine Shafts Kautex Textron
Corolla 2010 Blue Springs 10 Fasteners/Fixings Midway Products
Corolla 2011 Fremont 10 Fasteners/Fixings Midway Products
Corolla 2010 Blue Springs 10 Friction Plates Borgwarner
Corolla 2011 Fremont 10 Friction Plates Borgwarner
Corolla 2010 Blue Springs 10 Interior Mirror Gentex
Corolla 2011 Fremont 10 Interior Mirror Gentex
Corolla 2010 Blue Springs 10 Lock Systems TRW
Corolla 2011 Fremont 10 Lock Systems TRW
Corolla 2010 Blue Springs 10 Vibration Controls Sika
Corolla 2011 Fremont 10 Vibration Controls Sika
Corolla 2010 Blue Springs 10 Seals [body] Sika
Corolla 2011 Fremont 10 Seals [body] Sika
Corolla 2010 Blue Springs 10 Seat Belts Takata
Corolla 2011 Fremont 10 Seat Belts Takata

Figure 7. (Color online) Geographic Distances for Sika and Gentex, Pre- and Postrelocation

Table 11. Summary Statistics Displaying Changes in Distance and Defect Rate
Postrelocation

Distance increase Distance decrease No change (control)

ΔDistance (km) 3,184.23 –3,105.58 0
ΔDistance (%) 46.10% –47.61% 0%
ΔDefect rate 0.83 –0.23 –0.07
ΔDefect rate (%) 2.10% –1.11% –0.16%
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Table 12. Secondary Regression Results Using Model Relocations

1 2 3 4 5 6 7 8 9

ΔDistance 0.85** 0.85** 0.97*** 0.98*** 0.97*** 0.97*** 1.00*** 1.00*** 1.00***
(0.35) (0.35) (0.37) (0.37) (0.37) (0.37) (0.38) (0.38) (0.38)

Luxury — 0.17*** 0.16*** 0.10*** 0.12*** 0.20*** 0.19*** 0.19*** 0.19***
— (0.02) (0.01) (0.01) (0.02) (0.02) (0.02) (0.02) (0.02)

In-to-Out — — –0.43 –0.48 –0.47 –0.42 –0.42 –0.42 –0.42
— — (0.66) (0.66) (0.66) (0.67) (0.68) (0.68) (0.68)

Out-to-In — — –0.07** –0.12*** –0.12*** –0.06** –0.08** –0.07* –0.07*
— — (0.04) (0.04) (0.04) (0.03) (0.04) (0.04) (0.04)

Generation — — — 0.06 0.10 0.18 0.18 0.19 0.18
— — — (0.09) (0.16) (0.18) (0.18) (0.19) (0.19)

Subcomponents — — — — –0.001 0.04*** 0.04*** 0.03*** 0.03***
— — — — (0.01) (0.01) (0.01) (0.01) (0.01)

Assets — — — — — –0.034 –0.04 –0.04 –0.04
— — — — — (0.03) (0.04) (0.04) (0.05)

Employees — — — — — — 0.01 0.01 0.01
— — — — — — (0.06) (0.07) (0.06)

Patents — — — — — — — 0.01 0.01
— — — — — — — (0.05) (0.05)

Volume — — — — — — — — 0.01
— — — — — — — — (0.05)

R2 0.31 0.32 0.33 0.37 0.38 0.38 0.38 0.38 0.38
N 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54

Notes. This table presents estimates of our defect-rate model using our secondary identification technique. We present the estimates in the
fashion of Table 8. The sample horizon is 1999–2014. We calculate standard errors with the bootstrap, sampling supply chain links randomly.

*p < 0.1; **p < 0.05; ***p < 0.01.

Table 13. Quality Improvement Model Estimates

1 2 3 4 5 6 7 8 9

Distance 0.21*** 0.18*** 0.20*** 0.21*** 0.21*** 0.22*** 0.23*** 0.22*** 0.22***
(0.06) (0.06) (0.06) (0.06) (0.06) (0.06) (0.06) (0.06) (0.06)

Luxury — –0.08 –0.01 –0.09 –0.08 –0.08 –0.08 –0.09 –0.09
— (0.14) (0.14) (0.14) (0.14) (0.14) (0.14) (0.14) (0.015)

International — — –0.03 –0.02 –0.04 –0.05 –0.062 –0.06 –0.06
— — (0.22) (0.22) (0.22) (0.23) (0.23) (0.23) (0.23)

Generation — — — 0.11* 0.12 0.12 0.12 0.13* 0.13
— — — (0.07) (0.07) (0.07) (0.07) (0.07) (0.08)

Subcomponents — — — — 0.10*** 0.10*** 0.103*** 0.10*** 0.10***
— — — — (0.01) (0.01) (0.01) (0.01) (0.01)

Assets — — — — — 0.04*** 0.05*** 0.05** 0.04***
— — — — — (0.01) (0.01) (0.01) (0.01)

Employees — — — — — — –0.01 –0.02 –0.02
— — — — — — (0.05) (0.05) (0.05)

Patents — — — — — — 0.02 0.02
— — — — — — (0.04) (0.04)

Volume — — — — — — — 0.02***
— — — — — — — (0.00)

Constant –1.56*** –1.29*** –1.494*** –2.334*** –2.686*** –3.2503*** –3.263*** –3.155*** –3.313***
(0.42) (0.16) (0.43) (0.74) (0.78) (0.85) (0.88) (0.88) (1.12)

R2 0.07 0.09 0.12 0.14 0.16 0.16 0.17 0.17 0.18
N 1.78 1.78 1.78 1.78 1.78 1.78 1.78 1.78 1.78

Notes. This table presents estimates of our defect-rate model by estimating the evolution of defect rates for a given product,
produced by the same supplier for the same car model across subsequent model iterations. We present the estimates in the
fashion of Table 8. The sample horizon is 1999–2014.

*p < 0.1; **p < 0.05; ***p < 0.01.
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it only has one factory. Our results are virtually identical
whether we include suppliers with multiple factories or
restrict our sample to single-factory suppliers.

10.2. Competition
The degree of supplier competition is a potential con-
founding variable. The competitiveness of the envi-
ronment near the assembly plant can causally affect
a component’s quality—a supplier will work harder
when the local competition is fierce—and how far the
assembler must go to source it. An automaker, after
all, won’t have to go as far when the market is thick.
In this fashion, supplier competitiveness could me-
diate the effect of supplier proximity on product
quality.

To measure this effect, we add three additional in-
dependent variables: the number of suppliers of the
given component within 100,500 and 1,000 km of the
given assembly plant. Table 15 shows evidence of
a competition effect: defect rates decrease significantly
with all three supplier counts. But we find that our
results are robust—still at the 1% level—with the in-
clusion of the distance variables.

10.3. Cluster Robust Standard Errors
We change our standard error methodology from the
bootstrap to a two-way cluster-robust approach. These
standard errors permit general error term hetero-
skedasticity and select error term cross-correlations.
Specifically, two errors may be correlated if they have
a “cluster” in common; we cluster our sample by sup-
plier and assembly plant, so εp1s1 may covary with εp2s2 if
s1 � s2 or if products p1 and p2 are installed in cars at the
same facility. For example, Ford’s Hermosillo assembly
plant corresponds to 421 observations, which may have
a general error term covariance matrix, and supplier

Yorozu Corp. corresponds to 65 observations, which
may also have a general error term covariance matrix.
The effect of supply chain distance is also statistically
significant with these alternative standard errors.

10.4. B-Spline Terms
To quantify the benefit of including the distance-based
information in our supplier-selectionmodel, we compare
our model to an alternative without the B-splines. We
run the regressions at the part-type level. For the av-
erage part, our supplier-selection model has a root-
mean-square error (RMSE) of 0.1723 with the distance
variables and an RMSE of 0.1898 without the distance
variables. Thus, our RMSEwould on average be (0.1898–
0.1723)/0.1723 = 8.42% larger without these. Further,
to verify if our results hold without the B-splines, we
run the regressions without the selection probability
B-spline terms. Removing the Dahl correction terms
does not meaningfully change our results.

10.5. Probit Selection Probabilities
To test whether our results are robust to the form of the
supplier-selection probability, we change our selection
probability estimates from multinomial logistic regres-
sion fitted values to standard probit regression fitted
values (with the same regressors).We find that changing
the form of the supplier-selection probability does not
meaningfully change our results.

10.6. Additive Estimates
In the base model, we use a multiplicative (log-log)
model to account for the positive and skewed nature of
the continuous variables. We now change our econo-
metric specification from multiplicative to additive,
removing logarithms. We also rescale the continuous
variables to have a standard deviation of one, to make
their coefficients more interpretable. We estimate that
increasing supply chain distance by one standard de-
viation increases the expected failure rate by a signifi-
cantly positive amount.

10.7. Paired Fixed Effects
Since close coordination and collaboration regarding
component designs is a key conjectured mechanism for
attaining proximity benefits, we are likely to observe
different outcomes for different country pairs. To en-
sure that our results are not affected by this peculiarity,
we obtain estimates for amodel that pairs the upstream-
location × downstream-location fixed effects. Column 7
in Table 15 shows that our estimates are robust to this
estimation.

10.8. Internal Combustion vs. Electric/
Hybrid Vehicles

Electric cars have lower component complexity and
higher software complexity than internal combustion
(IC) cars. Thus, the strength of the relationship between

Figure 8. (Color online) Geographic Distances vs. Travel
Distances

Notes. This figure shows a visualization of the geographic distance
vs. travel distance for five suppliers of the Ford Explorer 2013, which
is assembled in Chicago, Illinois. The supplier factories are located in
Fayetteville, Arkansas (tires); Pensacola, Florida (braking system);
Carey, Ohio (seating); Livonia, Michigan (doors/tailgate); and
Ladson, South Carolina (axles). For each route, we obtained the
respective travel time by looking at average traffic congestion.
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Distance and Defect Rate may change as the fleet tran-
sitions away from IC vehicles.We test whether this is the
case by dividing our sample into parts that are specific
to IC vehicles (such as engines, transmissions, and fuel
systems) and parts that are not specific to IC vehicles
(such as tires, seats, and airbags). Table 17 in the online
Appendix indicates that the non-IC-specific parts rep-
resent the majority of our sample with respect to both
counts and defect reports. We rerun our primary
analysis on the subsample of parts that are not specific to
internal combustion vehicles and tabulate the regression
coefficients in column 9 of Table 15, finding that even
when we rule out the complexities due to internal com-
bustion, there is still a strong relationship between
Distance and Defect Rate. This result suggests that re-
moving the IC engine won’t be enough to overcome the
burden of distance in auto supply chains.

10.9. Truncated Dependent Variable
We rerun our analysis by estimating the complaint
rate with only the defects in year x, for x∈ {1, 2, 3}.
These estimates are presented in columns 9, 10, and 11
in Table 15. The coefficient estimates of Distance are
larger with only these early year defects. This makes
sense because early year defects are more likely to stem
from production and design problems (which should
depend on supply chain distance), whereas latter-
year defects are more likely to arise from normal wear
and tear (which shouldn’t depend on supply chain
distance).

10.10. Nonlinear Impact of Distance
Figure 9 depicts the relationship between distance and
quality nonparametrically along the percentiles of the
Distance distribution. The relationship appears linear,

Table 14. Defect-Rate Model Estimates Under Travel Time Distance Measure

1 2 3 4 5 6 7 8 9

Travel Time 0.95** 0.99** 1.03*** 0.97** 0.93** 1.00*** 0.99** 1.03*** 1.03***
(0.40) (0.40) (0.39) (0.38) (0.37) (0.38) (0.38) (0.39) (0.39)

Luxury — 3.42*** 3.42*** 3.56*** 3.15*** 3.22*** 3.21*** 3.20*** 3.37***
— (0.62) (0.62) (0.82) (0.80) (0.81) (0.82) (0.81) (0.83)

International — — –0.27 –0.40 –0.46 –0.54 –0.52 –0.56 –0.47
— — (0.80) (0.79) (0.76) (0.76) (0.76) (0.75) (0.74)

Generation — — — –1.71** –2.20*** –2.33*** –2.33*** –2.34*** −3.02***
— — — (0.79) (0.80) (0.81) (0.80) (0.81) (0.85)

Subcomponents — — — — 3.61*** 3.60*** 3.60*** 3.60*** 2.73***
— — — — (0.35) (0.36) (0.35) (0.35) (0.43)

Assets — — — — — 0.61*** 0.63*** 0.67*** 0.68***
— — — — — (0.18) (0.17) (0.18) (0.17)

Employees — — — — — — –0.07 –0.05 –0.02
— — — — — — (0.14) (0.14) (0.14)

Patents — — — — — — — –0.12 –0.09
— — — — — — — (0.16) (0.16)

Volume — — — — — — — — 12.82***
— — — — — — — — (2.61)

Dahl coefficient 1 –3.97 –3.91 –3.90 –3.89 –3.90 –3.98 –3.92 –3.92 –3.97
(3.42) (3.41) (3.41) (3.41) (3.34) (3.32) (3.36) (3.38) (3.35)

Dahl coefficient 2 –4.18* –4.21* –4.21* –4.00* –3.95* –4.06* –4.02* –3.94* –4.20*
(2.21) (2.21) (2.20) (2.18) (2.16) (2.17) (2.20) (2.24) (2.21)

Dahl coefficient 3 –5.09** –5.05** –5.05** –5.11** –5.08** –5.27** –5.16** –4.94** –4.87**
(2.15) (2.16) (2.16) (2.15) (2.12) (2.13) (2.21) (2.32) (2.27)

Dahl coefficient 4 2.61 2.59 2.59 3.45 3.45 3.55 3.61 3.84 3.33
(4.81) (4.79) (4.79) (4.77) (4.72) (4.70) (4.71) (4.81) (4.73)

Dahl coefficient 5 –13.88* –13.61* –13.61* –15.30* –14.65* –14.95* –14.79* –14.73* –13.96*
(8.02) (7.97) (8.00) (8.24) (8.11) (8.19) (8.24) (8.21) (7.93)

Dahl coefficient 6 1.94 1.76 1.90 3.83 1.78 1.03 1.20 1.78 0.78
(10.15) (10.07) (10.07) (10.42) (10.48) (10.57) (10.62) (10.79) (10.31)

R2 0.21 0.21 0.21 0.21 0.22 0.22 0.22 0.22 0.22
VIF — 1.00 1.14 1.17 1.17 1.27 1.55 1.87 1.90
N 24.07 24.07 24.07 24.07 24.07 24.07 24.07 24.07 24.07

Notes. This table presents estimates of the defect-rate coefficients in the fashion of Table 8. For these regressions, however, we
measure Distance with the expected travel time, rather than with geographic distance, calculated with Vicenty’s formula. The
sample horizon is 1999–2014.

*p < 0.1; **p < 0.05; ***p < 0.01.
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which justifies our linear statistical specifications. To
study this assumption more carefully, we run a qua-
dratic fit for theDistance variable. Column 12 in Table 15
reports coefficient estimates from a model that permits
Defect Rate to depend on both Distance and Distance2.

Overall, 97% of our sample lies in the region in which
Defect Rate increases with Distance (i.e., the region of the
parabola with positive slope). So even with a quadratic
model, we find positive association between distance
and defect rates.

Table 15. Robustness Checks

1 2 3 4 5 6 7 8 9 10 11 12

Distance 0.82*** 0.55*** 0.88*** 0.81*** 0.81*** 2.03*** 0.47*** 0.62*** 1.62*** 1.40*** 1.36** −2.63**
(0.17) (0.15) (0.17) (0.16) (0.16) (0.68) (0.23) (0.18) (0.47) (0.51) (0.55) (1.24)

Distance2 0.23***
(0.09)

Luxury 2.93*** 2.86*** 2.88*** 2.85*** 2.85*** 21.43*** 2.76*** 4.66*** −8.05*** −5.13*** –6.39*** 2.98***
(0.59) (0.58) (0.59) (0.57) (0.57) (2.79) (0.76) (0.94) (2.42) (1.69) (1.89) (0.72)

International 0.41 0.37 –0.12 0.04 0.04 1.67 0.38 –0.13 –3.83** −1.90 0.31 0.17
(0.63) (0.60) (0.66) (0.62) (0.63) (2.12) (0.99) (0.60) (1.88) (1.67) (2.10) (0.57)

Generation –1.22*** –1.22*** –0.89 –4.33*** –1.41*** –1.39*** –1.25*** –2.14*** –1.11*** –3.97*** –6.96*** −1.38***
(0.31) (0.31) (0.65) (0.36) (0.32) (0.34) (0.42) (0.49) (0.21) (1.18) (1.76) (0.44)

Subcomponents 3.72*** 3.92*** 3.58*** 3.77*** 3.77*** 20.99*** 3.71*** 2.85*** 4.71*** 4.75*** 4.43*** 3.75***
(0.20) (0.20) (0.19) (0.19) (0.19) (0.91) (0.25) (0.24) (0.88) (0.79) (0.71) (0.24)

Volume 20.54*** 20.55*** 14.54*** 9.63*** 20.46*** 20.23*** 21.07*** 17.41*** 47.11*** 28.88*** 38.78*** 20.81***
(1.42) (1.42) (2.61) (0.80) (1.31) (1.46) (1.11) (1.38) (4.85) (4.58) (4.03) (1.12)

Assets 0.09 0.10 0.08 0.08 0.08 1.37 0.07 −0.07 0.13 0.13 –0.46 0.11
(0.11) (0.11) (0.12) (0.11) (0.11) (2.01) (0.14) (0.07) (0.30) (0.33) (0.35) (0.13)

Employees –0.13 –0.09 –0.01 –0.07 –0.07 –1.26 –0.09 –0.06 –0.29* –0.23 0.18 −0.09
(0.10) (0.10) (0.11) (0.10) (0.10) (1.57) (0.09) (0.11) (0.17) (0.16) (0.21) (0.09)

Patents –0.32*** –0.19** –0.19* –0.19** –0.19** –3.19* –0.19** –0.02 –1.00*** 0.03 –0.02 −0.20**
(0.10) (0.09) (0.10) (0.09) (0.09) (1.77) (0.08) (0.12) (0.30) (0.37) (0.42) (0.09)

Dahl coefficient 1 1.71 –0.31 0.41 — –16.76 2.04 2.11 –3.74 2.85 –14.76 –19.53 1.99
(1.82) (1.72) (1.68) — (40.50) (3.85) (5.45) (4.40) (60.45) (49.29) (48.61) (5.61)

Dahl coefficient 2 –1.64 –0.94 –1.33 — 5.18 –0.85 –6.87** –2.42 31.41 8.64 18.77 –6.08*
(1.17) (1.21) (1.18) — (13.83) (4.02) (3.38) (3.44) (22.96) (25.65) (42.49) (3.35)

Dahl coefficient 3 1.00 –0.67 –0.05 — –1.55 1.59 −0.09 0.21 10.65 –3.45 1.11 0.04
(1.30) (1.36) (1.31) — (18.36) (4.04) (1.97) (1.66) (26.41) (21.52) (26.38) (1.92)

Dahl coefficient 4 1.42 1.29 1.15 — –11.39 6.60 –0.39 5.17 12.75 –2.23 19.25 −0.13
(2.23) (2.27) (2.14) — (17.78) (9.49) (3.71) (4.30) (60.73) (62.48) (53.72) (3.73)

Dahl coefficient 5 –0.51 –4.77 –3.22 — 17.84 –12.84 9.43 1.72 34.97 –15.81 −25.41 9.81
(3.36) (3.56) (3.39) — (28.16) (14.42) (6.31) (6.83) (72.85) (144.63) (89.24) (6.51)

Dahl coefficient 6 –3.02 –2.28 –2.95 — –12.13 –4.27 –16.35* –6.56 –7.28 –2.70 10.16 –16.56*
(6.04) (5.62) (6.01) — (21.16) (22.53) (8.44) (7.18) (24.55) (30.90) (38.94) (8.59)

Suppliers(100) — –1.45*** — — — — — — — — — —
— (0.51) — — — — — — — — — —

Suppliers(500) — –0.82* — — — — — — — — — —
— (0.46) — — — — — — — — — —

Suppliers(1000) — –2.80*** — — — — — — — — — —
— (0.77) — — — — — — — — — —

R2 0.25 0.25 0.28 0.21 0.26 0.25 0.26 0.16 0.32 0.29 0.29 0.25
VIF 1.92 1.92 1.91 5.76 2.03 1.99 1.92 2.00 1.90 1.91 1.95 106.72
N 23.79 23.79 23.79 23.79 21.79 22.29 23.70 16.11 23.79 19.11 17.70 23.79

Notes. This table presents coefficients of the defect-rate model under seven alternate specifications. The column 1 regression limits the sample to
contracts won by suppliers with only one factory. The column 2 specification adds three new variables to defect rate model: the number of
supplier factories that produce the given part within 100, 500, and 1,000 km of the assembly plant. The column 3 specification uses the cluster-
robust standard errors of Cameron et al. (2008). The column 4 specification has no correction terms; that is, we eliminate theDahl coefficients. The
column 5 specification estimates supplier-selection probabilities with a probit regression, rather than a multinomial logistic regression. The
column 6 specification is additive, with all logarithms removed from the independent and dependent variables (for formatting purposes, we also
scale each variable so its standard deviation is one). The column 7 specification adds fixed effects for every assembler country, supplier-country
pair. The column 8 specification only estimates the impact on non-IC-specific components. Columns 9–11 present estimates of our defect rate
model with only the reports received in the initial x years, where x � {1, 2, 3}. Column 12 presents estimates of our defect rate model with
a quadratic fit. The sample horizon is 1999–2014.

*p < 0.1; **p < 0.05; ***p < 0.01.
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11. Conclusion
Supply chain proximity facilitates coordination, which
facilitates continuous improvement. Dyer (1996,
pp. 282–287) hypothesized

a relationship between quality and the adjustedmeasure
of face-to-face contact . . . . Toyota’s value chain is more
specialized, and more productive, than Nissan’s or
GM’s, and a key factor seems to be the geographic
proximity of Toyota’s production network. Indeed, we
might expect a geographically concentrated production
network to have advantages because proximity facili-
tates the formal and informal dissemination of in-
formation and technology across firms (as evidence, our
survey found that Toyota and its suppliers engaged in
the most information sharing). Moreover, proximity
makes available a range of human-intensive (high me-
dia) communication mechanisms which facilitates the
flow of tacit and complex knowledge across firms (Daft
and Lengel, 1986, Almeida and Kogut, 1994). Thus,
Toyota’s network may simply learn faster than Nissan’s
or GM’s network.

We provide the first empirical evidence of Dyer’s
conjecture: we find it is more difficult to extract a reliable
part from a far-off land. We estimate that replacing the
current supplier distance with that of the next-closest
competitor would increase the average defect rate by
1.57%–2.17%.

“So, what would a one-percent change [in the defect
rate] mean?” Nick Persichilli, a Senior Manager at the

Automotive Part’s Manufacturer’s Association (APMA),
asks. “A one-percent change would mean the world,
because we’re always looking to improve efficiencies,
find improvements in quality, find better ways to
manufacture it. . . . There is a lot of interest, and it would
mean a lot to the industry.” In addition toMr. Persichilli,
we asked three NHTSA executives to interpret our re-
sults. These interviews impressed upon us the fact that
the brunt of poor auto quality is borne not by the in-
dustry, but by the public at large. And this public ex-
pense is formidable: in 2015, NHTSA estimated the
economic and societal cost of auto collisions to be $242
and $847 billion per year, respectively. In the Online
Appendix, we rerun our analysis with NHTSA’s crash
reports, rather than defect reports, as the dependent
variable. We estimate that doubling all supply chain
distances would increase crash rates by 0.37%, which
would increase the societal cost of auto collisions by
0.37% * $847 billion per year = $2.4 billion per year.4

Guajardo et al. (2016, p. 1872) estimate that “for a car
with median product characteristics in [their] sample,
the effect on consumer utility of a 1% price decrease is
equivalent, all else being equal, to increasing product
quality by 2.2%.” Combining this result with ours, we
estimate that replacing the current set of suppliers with
the next-closest set yields a quality change roughly
equal to a 1% price change.
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Endnotes
1We use Vincenty’s (1975) formula to calculate geographic distances
from latitudes and longitudes.
2We present supplier-selection coefficients from the first stage in the
online Appendix.
3Both measures—Geographic Distance and Travel Time—have ad-
vantages. On the one hand, measuring proximity with Travel Time
yields a more direct proxy of the ease of collaboration, monitoring,
and face-to-face interactions (Giroud2013).On the other hand,Geographic
Distance can be defined without imposing assumptions on the firms’
travel behavior,whereas travel time forces us tomake assumptions about
the modes of transportation, travel routes, congestion levels, etc.
4 See the online Appendix for additional analysis based on auto recalls.
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